返回 死在火星上 首页

上一页 目录 下一页

对火星轨道变化问题的最后解释[2/2页]

天才一秒记住本站地址:[58小说]https://m.58books.com最快更新!无广告!

    elementsofMercury,especiallyitseccentricity,seemtochangetoasignificantextent.Thisispartlybecausetheorbitaltimescaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalevolutionthanotherplanets;theinnermostplanetmaybenearesttoinstability.ThisresultappearstobeinsomeagreementwithLaskar's(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofMercuryonatimescaleofseveral109yr.However,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobalstabilityofthewholeplanetarysystemowingtothesmallmassofMercury.WewillmentionbrieflythelongtermorbitalevolutionofMercurylaterinSection4usinglowpassfilteredorbitalelements.
    Theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistimespan(seealsoSection5).
    3.2Time?frequencymaps
    Althoughtheplanetarymotionexhibitsverylongtermstabilitydefinedasthenonexistenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtimespans.Evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofEarth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf.Berger1988).
    Togiveanoverviewofthelongtermchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwodimensionaltime?frequencymaps.Thespecificapproachtodrawingthesetime?frequencymapsinthispaperisverysimple?muchsimplerthanthewaveletanalysisorLaskar's(1990,1993)frequencyanalysis.
    Dividethelowpassfilteredorbitaldataintomanyfragmentsofthesamelength.Thelengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFFT.
    Eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+T,thenextdatasegmentrangesfromti+δT≤ti+δT+T,whereδT?T.WecontinuethisdivisionuntilwereachacertainnumberNbywhichtn+Treachesthetotalintegrationlength.
    WeapplyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams.
    Ineachfrequencydiagramobtainedabove,thestrengthofperiodicitycanbereplacedbyagreyscale(orcolour)chart.
    Weperformthereplacement,andconnectallthegreyscale(orcolour)chartsintoonegraphforeachintegration.Thehorizontalaxisofthesenewgraphsshouldbethetime,i.e.thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n).Theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements.
    WehaveadoptedanFFTbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedecomposedintofrequencycomponentsisterriblyhuge(severaltensofGbytes).
    Atypicalexampleofthetime?frequencymapcreatedbytheaboveproceduresisshowninagreyscalediagramasFig.5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofEarthinN+2integration.InFig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.WecanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofEarthonlychangesslightlyovertheentireperiodcoveredbytheN+2integration.Thisnearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement.
    4.2Longtermexchangeoforbitalenergyandangularmomentum
    WecalculateverylongperiodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfilteredDelaunayelementsL,G,H.GandHareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass.LisrelatedtotheplanetaryorbitalenergyEperunitmassasE=?μ2\/2L2.Ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant.Nonlinearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain.Theamplitudeofthelowestfrequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually.However,suchasymptomofinstabilityisnotprominentinourlongtermintegrations.
    InFig.7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationN+2.Theupperthreepanelsshowthelongperiodicvariationoftotalenergy(denotedasEE0),totalangularmomentum(GG0),andtheverticalcomponent(HH0)oftheinnerfourplanetscalculatedfromthelowpassfilteredDelaunayelements.E0,G0,H0denotetheinitialvaluesofeachquantity.Theabsolutedifferencefromtheinitialvaluesisplottedinthepanels.ThelowerthreepanelsineachfigureshowEE0,GG0andHH0ofthetotalofnineplanets.Thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets.
    Comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplanetsaremuchsmallerthanthoseofallnineplanets:theamplitudesoftheouterfiveplanetsaremuchlargerthanthoseoftheinnerplanets.Thisdoesnotmeanthattheinnerterrestrialplanetarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialplanetscomparedwiththoseoftheouterjovianplanets.Anotherthingwenoticeisthattheinnerplanetarysubsystemmaybecomeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltimescales.Thiscanbeseeninthepanelsdenotedasinner4inFig.7wherethelongerperiodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9.Actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationoftheMercury.However,wecannotneglectthecontributionfromotherterrestrialplanets,aswewillseeinsubsequentsections.
    4.4Longtermcouplingofseveralneighbouringplanetpairs
    LetusseesomeindividualvariationsofplanetaryorbitalenergyandangularmomentumexpressedbythelowpassfilteredDelaunayelements.Figs10and11showlongtermevolutionoftheorbitalenergyofeachplanetandtheangularmomentuminN+1andN?2integrations.Wenoticethatsomeplanetsformapparentpairsintermsoforbitalenergyandangularmomentumexchange.Inparticular,VenusandEarthmakeatypicalpair.Inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum.Thenegativecorrelationinexchangeoforbitalenergymeansthatthetwoplanetsformacloseddynamicalsystemintermsoftheorbitalenergy.Thepositivecorrelationinexchangeofangularmomentummeansthatthetwoplanetsaresimultaneouslyundercertainlongtermperturbations.CandidatesforperturbersareJupiterandSaturn.AlsoinFig.11,wecanseethatMarsshowsapositivecorrelationintheangularmomentumvariationtotheVenus?Earthsystem.MercuryexhibitscertainnegativecorrelationsintheangularmomentumversustheVenus?Earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintheterrestrialplanetarysubsystem.
    ItisnotclearatthemomentwhytheVenus?Earthpairexhibitsanegativecorrelationinenergyexchangeandapositivecorrelationinangularmomentumexchange.Wemaypossiblyexplainthisthroughobservingthegeneralfactthattherearenoseculartermsinplanetarysemimajoraxesuptosecondorderperturbationtheories(cf.Brouweramp;amp;Clemence1961;Boccalettiamp;amp;Pucacco1998).Thismeansthattheplanetaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbingplanetsthanistheangularmomentumexchange(whichrelatestoe).Hence,theeccentricitiesofVenusandEarthcanbedisturbedeasilybyJupiterandSaturn,whichresultsinapositivecorrelationintheangularmomentumexchange.Ontheotherhand,thesemimajoraxesofVenusandEartharelesslikelytobedisturbedbythejovianplanets.ThustheenergyexchangemaybelimitedonlywithintheVenus?Earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair.
    Asfortheouterjovianplanetarysubsystem,Jupiter?SaturnandUranus?Neptuneseemtomakedynamicalpairs.However,thestrengthoftheircouplingisnotasstrongcomparedwiththatoftheVenus?Earthpair.
    5±5×1010yrintegrationsofouterplanetaryorbits
    Sincethejovianplanetarymassesaremuchlargerthantheterrestrialplanetarymasses,wetreatthejovianplanetarysystemasanindependentplanetarysystemintermsofthestudyofitsdynamicalstability.Hence,weaddedacoupleoftrialintegrationsthatspan±5×1010yr,includingonlytheouterfiveplanets(thefourjovianplanetsplusPluto).Theresultsexhibittherigorousstabilityoftheouterplanetarysystemoverthislongtimespan.Orbitalconfigurations(Fig.12),andvariationofeccentricitiesandinclinations(Fig.13)showthisverylongtermstabilityoftheouterfiveplanetsinboththetimeandthefrequencydomains.Althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofPlutoandtheotherouterplanetsisalmostconstantduringtheseverylongtermintegrationperiods,whichisdemonstratedinthetime?frequencymapsonourwebpage.
    Inthesetwointegrations,therelativenumericalerrorinthetotalenergywas~10?6andthatofthetotalangularmomentumwas~10?10.
    5.1ResonancesintheNeptune?Plutosystem
    Kinoshitaamp;amp;Nakai(1996)integratedtheouterfiveplanetaryorbitsover±5.5×109yr.TheyfoundthatfourmajorresonancesbetweenNeptuneandPlutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofPluto.Themajorfourresonancesfoundinpreviousresearchareasfollows.Inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeand?isthelongitudeofperihelion.SubscriptsPandNdenotePlutoandNeptune.
    MeanmotionresonancebetweenNeptuneandPluto(3:2).Thecriticalargumentθ1=3λP?2λN??Plibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2×104yr.
    TheargumentofperihelionofPlutoωP=θ2=?P?ΩPlibratesaround90°withaperiodofabout3.8×106yr.ThedominantperiodicvariationsoftheeccentricityandinclinationofPlutoaresynchronizedwiththelibrationofitsargumentofperihelion.ThisisanticipatedinthesecularperturbationtheoryconstructedbyKozai(1962).
    ThelongitudeofthenodeofPlutoreferredtothelongitudeofthenodeofNeptune,θ3=ΩP?ΩN,circulatesandtheperiodofthiscirculationisequaltotheperiodofθ2libration.Whenθ3becomeszero,i.e.thelongitudesofascendingnodesofNeptuneandPlutooverlap,theinclinationofPlutobecomesmaximum,theeccentricitybecomesminimumandtheargumentofperihelionbecomes90°.Whenθ3becomes180°,theinclinationofPlutobecomesminimum,theeccentricitybecomesmaximumandtheargumentofperihelionbecomes90°again.Williamsamp;amp;Benson(1971)anticipatedthistypeofresonance,laterconfirmedbyMilani,Nobiliamp;amp;Carpino(1989).
    Anargumentθ4=?P??N+3(ΩP?ΩN)libratesaround180°withalongperiod,~5.7×108yr.
    Inournumericalintegrations,theresonances(i)?(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(Figs14?16).However,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010yrtimescale(Fig.17).ThisisaninterestingfactthatKinoshitaamp;amp;Nakai's(1995,1996)shorterintegrationswerenotabletodisclose.
    6Discussion
    Whatkindofdynamicalmechanismmaintainsthislongtermstabilityoftheplanetarysystem?Wecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelongtermstability.First,thereseemtobenosignificantlowerorderresonances(meanmotionandsecular)betweenanypairamongthenineplanets.JupiterandSaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality),butnotjustintheresonancezone.Higherorderresonancesmaycausethechaoticnatureoftheplanetarydynamicalmotion,buttheyarenotsostrongastodestroythestableplanetarymotionwithinthelifetimeoftherealSolarsystem.Thesecondfeature,whichwethinkismoreimportantforthelongtermstabilityofourplanetarysystem,isthedifferenceindynamicaldistancebetweenterrestrialandjovianplanetarysubsystems(Itoamp;amp;Tanikawa1999,2001).WhenwemeasureplanetaryseparationsbythemutualHillradii(R_),separationsamongterrestrialplanetsaregreaterthan26RH,whereasthoseamongjovianplanetsarelessthan14RH.Thisdifferenceisdirectlyrelatedtothedifferencebetweendynamicalfeaturesofterrestrialandjovianplanets.Terrestrialplanetshavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation.Theyarestronglyperturbedbyjovianplanetsthathavelargermasses,longerorbitalperiodsandnarrowerdynamicalseparation.Jovianplanetsarenotperturbedbyanyothermassivebodies.
    Thepresentterrestrialplanetarysystemisstillbeingdisturbedbythemassivejovianplanets.However,thewideseparationandmutualinteractionamongtheterrestrialplanetsrendersthedisturbanceineffective;thedegreeofdisturbancebyjovianplanetsisO(eJ)(orderofmagnitudeoftheeccentricityofJupiter),sincethedisturbancecausedbyjovianplanetsisaforcedoscillationhavinganamplitudeofO(eJ).Heighteningofeccentricity,forexampleO(eJ)~0.05,isfarfromsufficienttoprovokeinstabilityintheterrestrialplanetshavingsuchawideseparationas26RH.Thusweassumethatthepresentwidedynamicalseparationamongterrestrialplanets(amp;gt;26RH)isprobablyoneofthemostsignificantconditionsformaintainingthestabilityoftheplanetarysystemovera109yrtimespan.OurdetailedanalysisoftherelationshipbetweendynamicaldistancebetweenplanetsandtheinstabilitytimescaleofSolarsystemplanetarymotionisnowongoing.
    AlthoughournumericalintegrationsspanthelifetimeoftheSolarsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace.Itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelongtermstabilityofourplanetarydynamics.
    ——以上文段引自Ito,T.amp;Tanikawa,K.LongtermintegrationsandstabilityofplanetaryorbitsinourSolarSystem.Mon.Not.R.Astron.Soc.336,483?500(2002)
    这只是作者君参考的一篇文章,关于太阳系的稳定性。
    还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《Nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。

对火星轨道变化问题的最后解释[2/2页]

『加入书签,方便阅读』

上一页 目录 下一页